

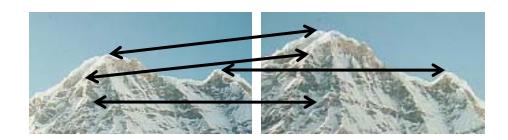
Lecture-4

Local features: main components

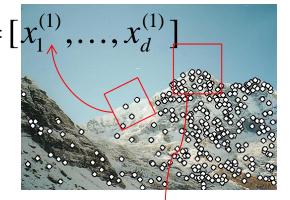
1) Detection: Identify the interest points

2) Description :Extract feature vector descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, x_d^{(1)} \\ \mathbf{x}_d \end{bmatrix}$ each interest point.

3) Matching: Determine correspondence between descriptors in two views



 $\mathbf{x}_{2}^{\Psi} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$



Where can we use it?

- Automate object tracking
- Point matching for computing disparity
- Stereo calibration
 - Estimation of fundamental matrix
- Motion based segmentation
- Recognition
- 3D object reconstruction
- Robot navigation
- Image retrieval and indexing

Goal: interest operator repeatability

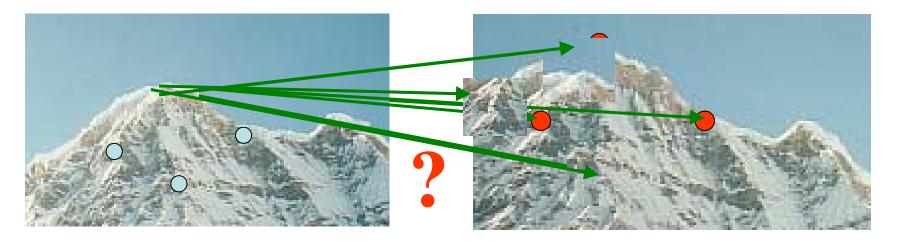
• We want to detect (at least some of) the same points in both images.

No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

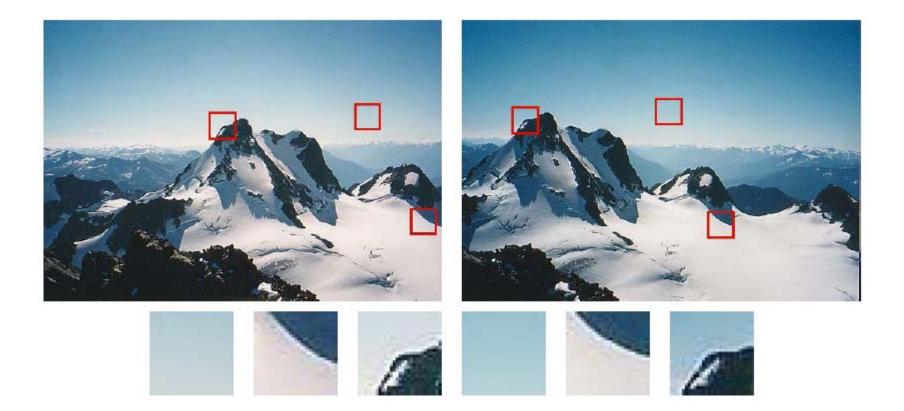
Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.



 Must provide some invariance to geometric and photometric differences between the two views.

Some patches can be localized or matched with higher accuracy than others.



Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding each interest point.

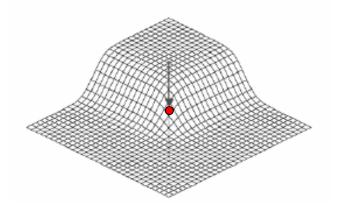
3) Matching: Determine correspondence between descriptors in two views

Kristen Grauman

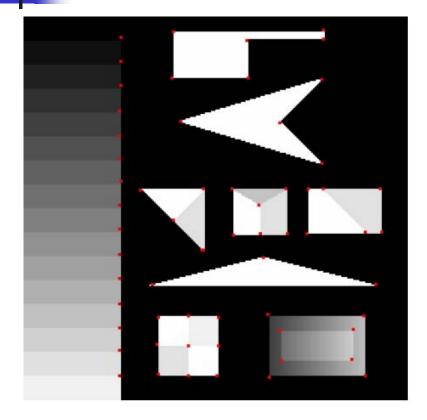
What is an interest point

Expressive texture

- The point at which the direction of the boundary of object changes abruptly
- Intersection point between two or more edge segments



Synthetic & Real Interest Points



Corners are indicated in red

Properties of Interest Point Detectors

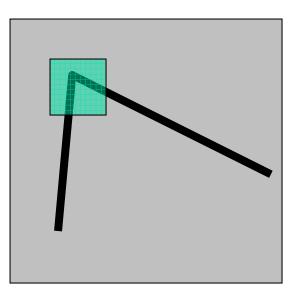
- Detect all (or most) true interest points
- No false interest points
- Well localized.
- Robust with respect to noise.
- Efficient detection

Possible Approaches to Corner Detection

- Based on brightness of images
 - Usually image derivatives
- Based on boundary extraction
 - First step edge detection
 - Curvature analysis of edges

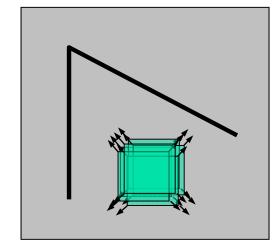
Harris Corner Detector

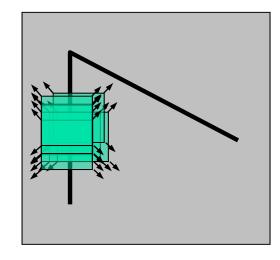
- Corner point can be recognized in a window
- Shifting a window in any direction should give a large change in intensity

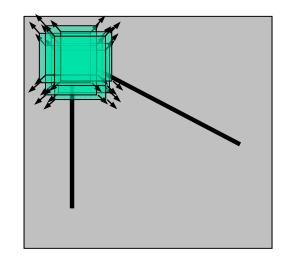


C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Basic Idea



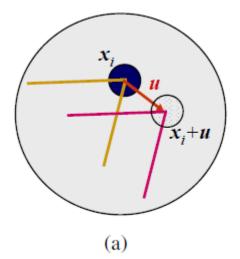




"flat" region: no change in all directions "edge": no change along the edge direction

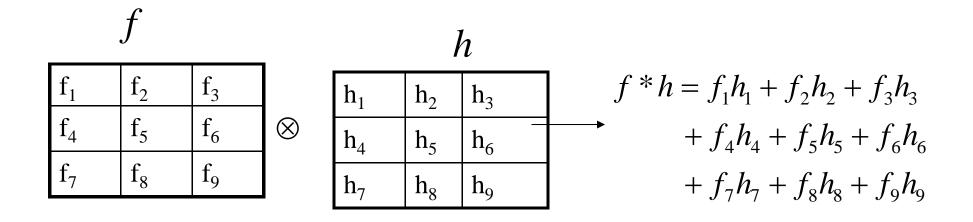
"corner": significant change in all directions

Aperture Problem



$$f \otimes h = \sum_{k} \sum_{l} f(k, l) h(i + k, j + l)$$
$$f = \text{Image}$$

h = Kernel



Correlation

$$f \otimes h = \sum_{k} \sum_{l} f(k,l)h(i+k, j+l)$$

Cross correlation

$$f \otimes f = \sum_{k} \sum_{l} f(k,l) f(i+k, j+l)$$
 Auto correlation

$$SSD = \sum_{k} \sum_{l} (f(k,l) - h(i+k, j+l))^{2} \text{ Sum of Squares Difference}$$

$$SSD = \sum_{k} \sum_{l} (f(k,l)^{2} - 2h(i+k, j+l)f(k,l) + h(i+k, j+l)^{2})$$

$$minimize \quad SSD = \sum_{k} \sum_{l} (-2h(i+k, j+l)f(k,l))$$

$$SSD = \sum_{k} \sum_{l} (2h(i+k, j+l)f(k,l))$$

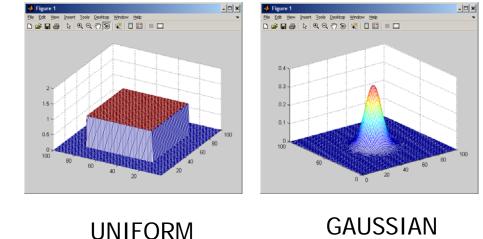
$$maximize \quad f \otimes f = \sum_{k} \sum_{l} f(k,l)f(i+k, j+l)$$

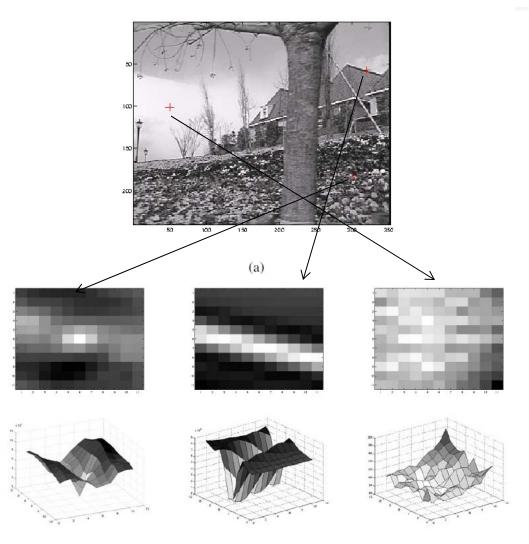
Change of intensity for the shift (u,v)

$$E(u,v) = \sum_{x,y}$$

$$\left[\underbrace{I(x+u, y+v)}_{\text{shifted intensity}} - \underbrace{I(x, y)}_{\text{intensity}}\right]^2$$

Auto-correlation





Taylor Series

f(x) Can be represented at point *a* in terms of its derivatives

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

$$E(u,v) = \sum_{x,y} \underbrace{w(x,y)}_{\text{window function}} \left[\underbrace{I(x+u,y+v)}_{\text{shifted intensity}} - \underbrace{I(x,y)}_{\text{intensity}} \right]^{2}$$

$$E(u,v) = \sum_{x,y} \underbrace{w(x,y)}_{\text{window function}} \left[\underbrace{I(x,y) + uI_{x} + vI_{y}}_{\text{shifted intensity}} - \underbrace{I(x,y)}_{\text{intensity}} \right]^{2}$$

$$E(u,v) = \sum_{x,y} w(x,y) \left[uI_{x} + vI_{y} \right]^{2}$$

$$E(u,v) = \sum_{x,y} w(x,y) \left[(u - v) \begin{pmatrix} I_{x} \\ I_{y} \end{pmatrix} \right]^{2}$$

$$E(u,v) = \sum_{x,y} w(x,y) (u - v) \begin{pmatrix} I_{x} \\ I_{y} \end{pmatrix} (I_{x} - I_{y}) \begin{pmatrix} u \\ v \end{pmatrix}$$

$$E(u,v) = (u - v) \left[\sum_{x,y} w(x,y) \begin{pmatrix} I_{x} \\ I_{y} \end{pmatrix} (I_{x} - I_{y}) \right]^{2}$$

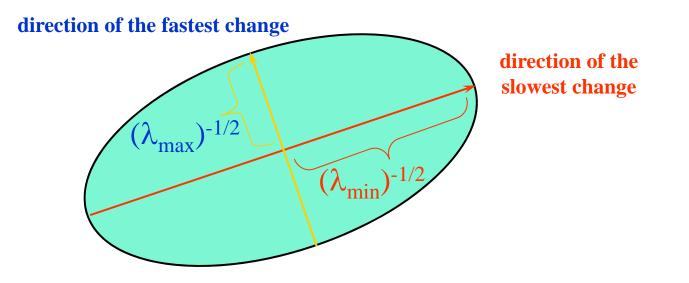
$$E(u,v) = (u - v) \left[\sum_{x,y} w(x,y) \begin{pmatrix} I_{x} \\ I_{y} \end{pmatrix} (I_{x} - I_{y}) \right]^{2}$$

$$E(u,v) = (u - v) \left[\sum_{x,y} w(x,y) \begin{pmatrix} I_{x} \\ I_{y} \end{pmatrix} (I_{x} - I_{y}) \right]^{2}$$

$$E(u,v) = (u - v) \left[\sum_{x,y} w(x,y) \begin{pmatrix} I_{x} \\ I_{y} \end{pmatrix} (I_{x} - I_{y}) \right]^{2}$$

$$E(u,v) = \begin{pmatrix} u & v \end{pmatrix} M \begin{pmatrix} u \\ v \end{pmatrix} \qquad \qquad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

- E(u,v) is an equation of an ellipse, where M is the covariance
- Let λ_1 and λ_2 be eigenvalues of M



Eigen Vectors and Eigen Values

The eigen vector, *x*, of a matrix *A* is a special vector, with the following property

 $Ax = \lambda x$ Where λ is called eigen value

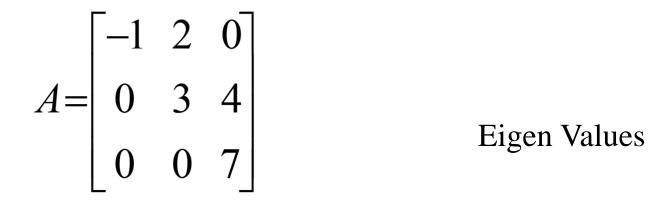
To find eigen values of a matrix A first find the roots of:

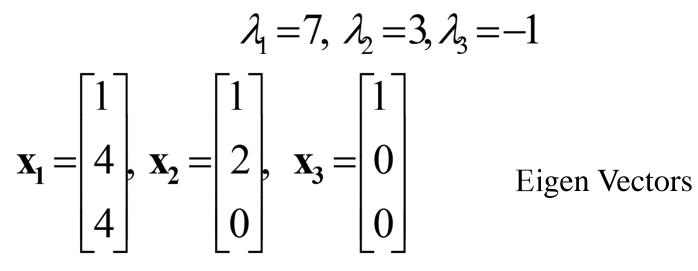
$$\det(A - \lambda I) = 0$$

Then solve the following linear system for each eigen value to find corresponding eigen vector

$$(A - \lambda I)x = 0$$

Example





Eigen Values

$$det(A - \lambda I) = 0$$

$$det(\begin{bmatrix} -1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}) = 0$$

$$det(\begin{bmatrix} -1 - \lambda & 2 & 0 \\ 0 & 3 - \lambda & 4 \\ 0 & 0 & 7 - \lambda \end{bmatrix}) = 0$$

$$(-1 - \lambda)((3 - \lambda)(7 - \lambda) - 0) = 0$$
$$(-1 - \lambda)(3 - \lambda)(7 - \lambda) = 0$$
$$\lambda = -1, \quad \lambda = 3, \quad \lambda = 7$$

$$\lambda = -1 \qquad (A - \lambda I)x = 0$$

$$\begin{pmatrix} -1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7 \end{pmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

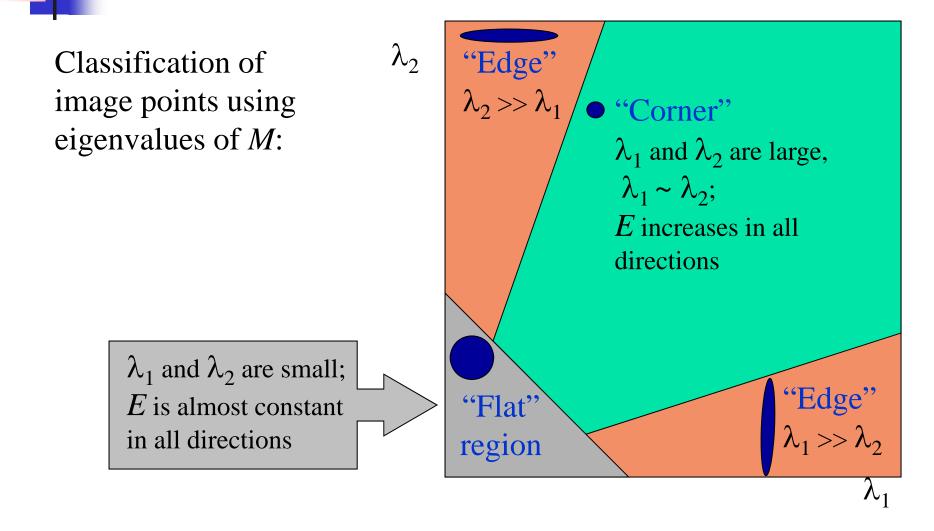
$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 4 & 4 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad 0 + 2x_2 + 0 = 0$$

$$0 + 4x_2 + 4x_3 = 0$$

$$0 + 0 + 8x_3 = 0$$

$$0 + 0 + 8x_3 = 0$$

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

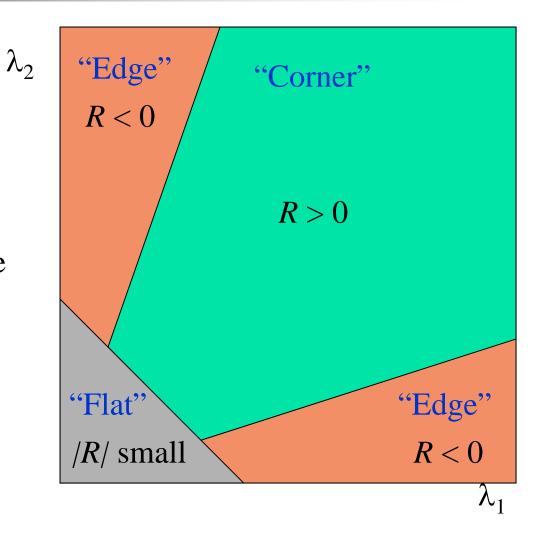


• Measure of cornerness in terms of λ_1 , λ_2

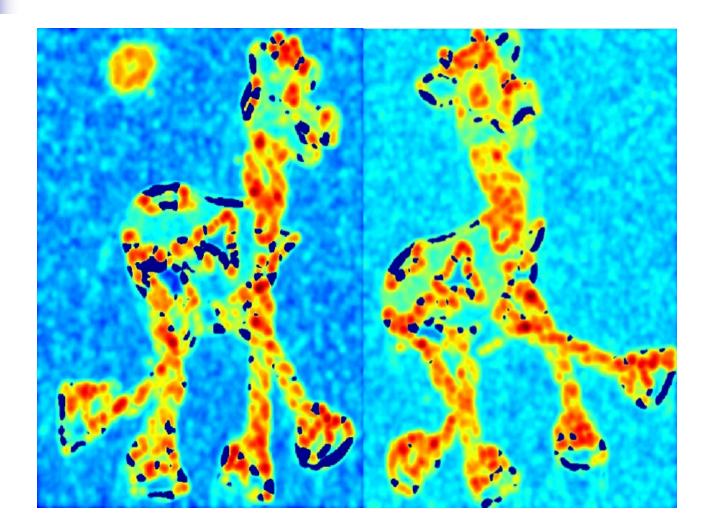
$$M = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

 $R = \det M - k(traceM)^2 \qquad R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$

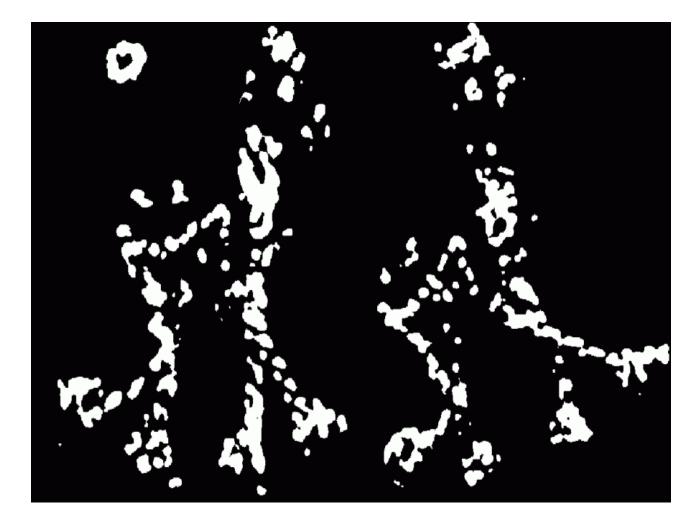
- *R* depends only on eigenvalues of M
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |*R*| is small for a flat region



Compute corner response



Find points with large corner response: *R*> threshold



Take only the points of local maxima of R

If pixel value is greater than its neighbors then it is a local maxima.

Other Version of Harris Detectors

 $R = \lambda_1 - \alpha \lambda_2$

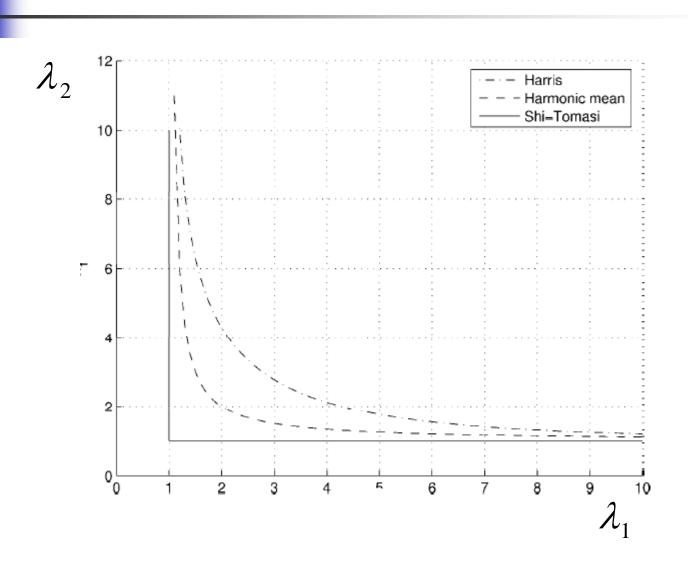
Triggs

$$R = \frac{\det(M)}{trace(M)_1} = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

Szeliski (Harmonic mean)

$$R = \lambda_1$$

Shi-Tomasi



Algorithm

- Compute horizontal and vertical derivatives of image I_x and I_y .
- Compute three images corresponding to three terms in matrix *M*.
- Convolve these three images with a larger Gaussian (window).
- Compute scalar cornerness value using one of the R measures.
- Find local maxima above some threshold as detected interest points.

Reading Material

Section 4.1.1 Feature Detectors

 Richard Szeliski, "<u>Computer Vision: Algorithms and Application</u>", Springer.