

CAP 5415 Computer Vision Fall 2012

Dr. Mubarak Shah Univ. of Central Florida

Edge Detection

Lecture-3

Example

Alper Yilmaz, Mubarak Shah Fall 2012UCF

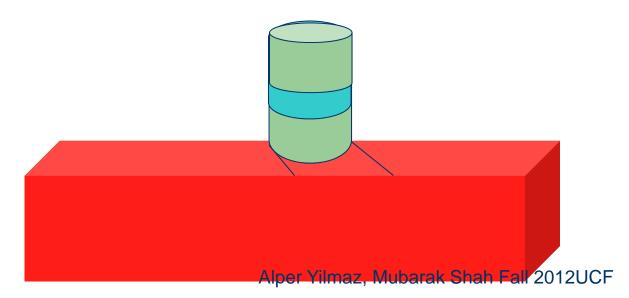
An Application

- What is an object?
- How can we find it?

Alper Yilmaz, Mubarak Shah Fall 2012UCF

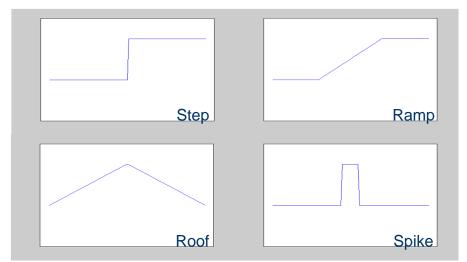
Edge Detection in Images

• At edges intensity or color changes



What is an Edge?

- Discontinuity of intensities in the image
- Edge models
 - Step
 - Roof
 - Ramp
 - Spike



Alper Yilmaz, Mubarak Shah Fall 2012UCF

Detecting Discontinuities

• Image derivatives

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon) - f(x)}{\varepsilon} \right) \longrightarrow \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\Delta x}$$

 Convolve image with derivative filters Forward difference
Central difference
[-1 0 1]
Alper Yilmaz, Mubarak Shah Fall 2012UCF

Derivative in Two-Dimensions

• **Definition** $\frac{\partial f(x, y)}{\partial f(x, y)} = \lim_{x \to \infty} \left(\frac{f}{\partial f(x, y)} \right)$

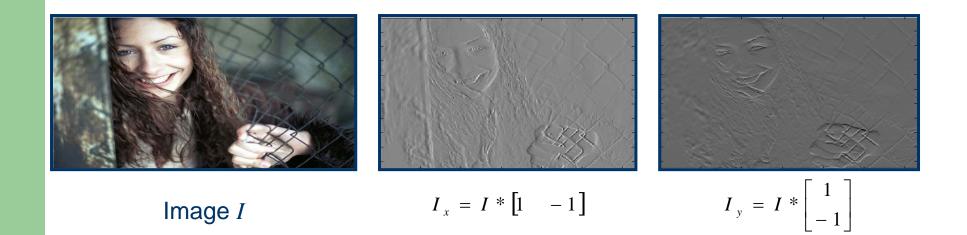
$$\frac{(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon} \right)$$

$$\frac{\partial f(x, y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x, y + \varepsilon) - f(x, y)}{\varepsilon} \right)$$

- Approximation y_m) $f(x_n, y_m)$ $\partial x \qquad \Delta x$
- $\frac{\partial f(x, y)}{\partial y} \approx \frac{f(x_n, y_{m+1}) f(x_n, y_m)}{\Delta x}$

 $f_x = \begin{bmatrix} 1 & -1 \end{bmatrix}$ • Convolution kernels $f_{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Image Derivatives



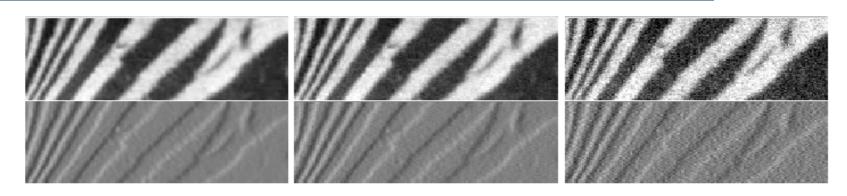
Derivatives and Noise

- Strongly affected by noise
 - obvious reason: image noise results in pixels that look very different from their neighbors
- The larger the noise is the stronger the response

- What is to be done?
 - Neighboring pixels look alike
 - Pixel along an edge look alike
 - Image smoothing should help
 - Force pixels different to their neighbors (possibly noise) to look like

Alper Yilmaz, **WeigalawrS**hah Fall 2012UCF

Derivatives and Noise



Increasing noise

Zero mean additive gaussian noise

Image Smoothing

- Expect pixels to "be like" their neighbors
 - Relatively few reflectance changes
- Generally expect noise to be independent from pixel to pixel
 - Smoothing suppresses noise

Gaussian Smoothing

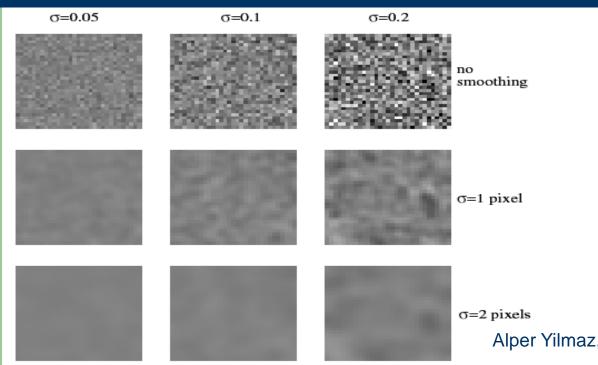
$$g(x, y) = e^{\frac{-(x^2 + y^2)}{2o^2}}$$

• Scale of Gaussian σ

- As σ increases, more pixels are involved in average
- As σ increases, image is more blurred
- As σ increases, noise is more effectively suppressed

Ğ,

Gaussian Smoothing (Examples)



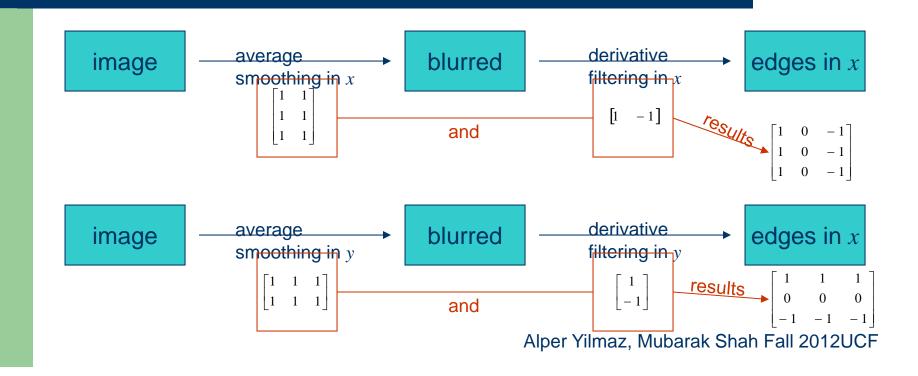
Edge Detectors

- Gradient operators
 - Prewit
 - Sobel
- Laplacian of Gaussian (Marr-Hildreth)
- Gradient of Gaussian (Canny)

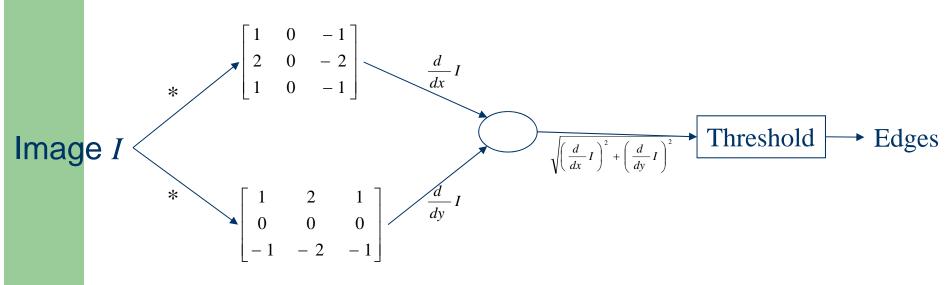
Prewitt and Sobel Edge Detector

- Compute derivatives
 - In x and y directions
- Find gradient magnitude
- Threshold gradient magnitude

Prewitt Edge Detector



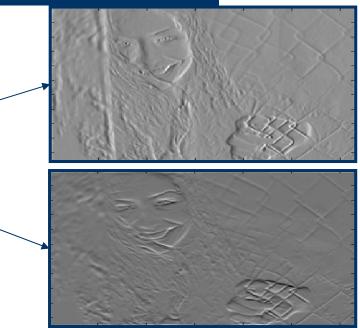
Sobel Edge Detector



Alper Yilmaz, Mubarak Shah Fall 2012UCF

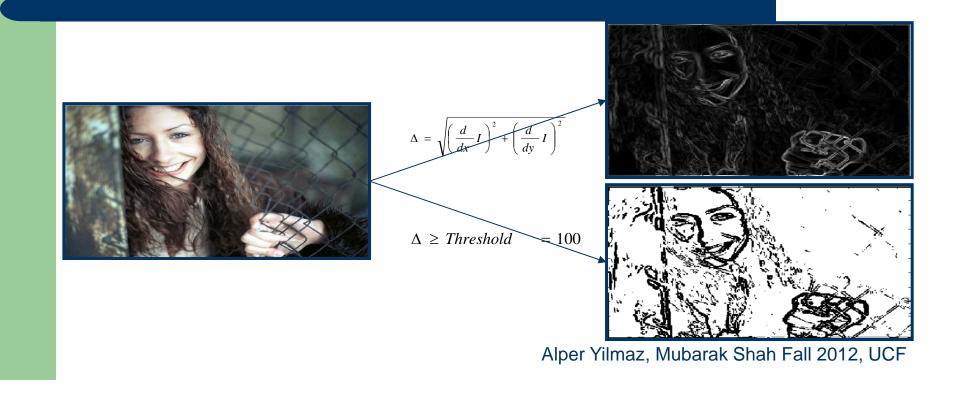
Sobel Edge Detector

dy



Alper Yilmaz, Mubarak Shah Fall 2012UCF

Sobel Edge Detector



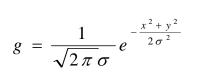
Marr Hildreth Edge Detector

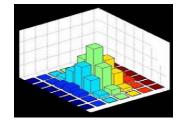
- Smooth image by Gaussian filter \rightarrow S
- Apply Laplacian to *S*
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics and Laplace equation
- Find zero crossings
 - Scan along each row, record an edge point at the location of zero-crossing.
 - Repeat above step along each column

Marr Hildreth Edge Detector

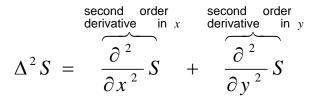
• Gaussian smoothing

smoothed	image		Gaussian	filter		image
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			<u> </u>		*	
2		=	g		1	1





#### • Find Laplacian



 $\bullet \nabla$  is used for gradient (derivative)

 $\bullet \Delta$  is used for Laplacian

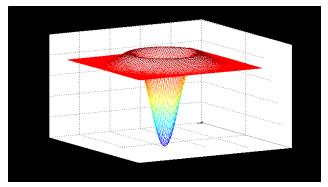


## **Marr Hildreth Edge Detector**

• Deriving the Laplacian of Gaussian (LoG)

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I$$

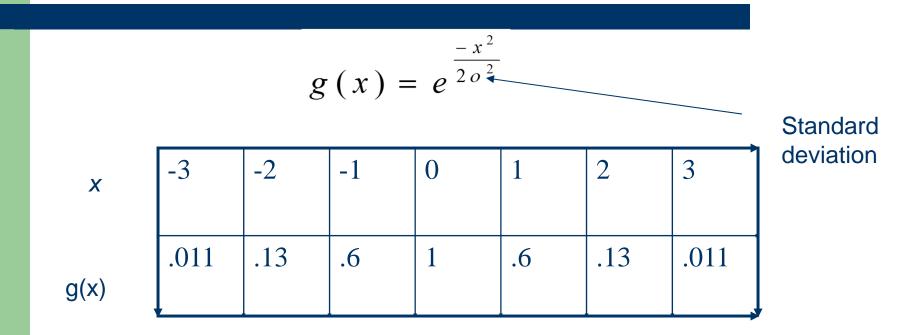
$$\Delta^{2} g = -\frac{1}{\sqrt{2\pi}\sigma^{3}} \left(2 - \frac{x^{2} + y^{2}}{\sigma^{2}}\right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

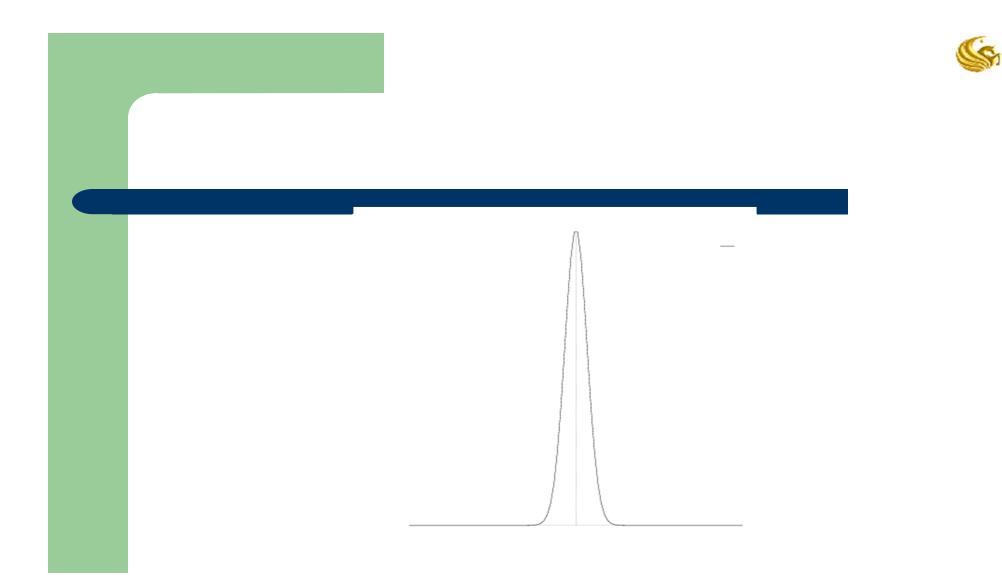


Alper Yilmaz, Mubarak Shah Fall 2012, UCF



#### Gaussian







## **2-D Gaussian**

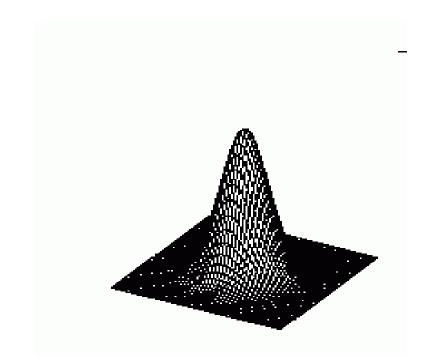
		4	5 (	, , ,	· ·							
0	0	0	0	1	2	2	2	1	0	0	0	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	1	4	11	20	30	34	- 30	20	11	4	1	0
0	3	11	26	50	73	82	73	50	26	11	3	0
1	6	20	50	93	136	154	136	93	50	20	6	1
2	9	30	73	136	198	225	198	136	73	30	9	2
2	11	34	82	154	225	255	225	154	82	34	11	2
2	9	30	73	136	198	225	198	136	73	30	9	2
1	6	20	50	93	136	154	136	93	50	20	6	1
0	3	11	26	50	73	82	73	50	26	11	3	0
0	1	4	11	20	30	34	- 30	20	11	4	1	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	0	0	0	1	2	2	2	1	0	0	0	0

$$g(x, y) = e^{\frac{-(x^2 + y^2)}{2o^2}}$$

$$\sigma = 2$$



## **2-D Gaussian**





#### **LoG Filter**

$\Delta^{2} G_{\sigma} = -\frac{1}{\sqrt{2\pi\sigma^{3}}} \left(2 - \frac{x^{2} + y^{2}}{\sigma^{2}}\right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$									
	0.0008	0.0066	0.0215	<mark>0</mark> .031	0.0215	0.0066	0.0008		
	0.0066	0.0438	0.0982	<mark>0</mark> .108	0.0982	0.0438	0.0066		
	0.0215	0.0982	0	<mark>-0</mark> .242	0	0.0982	0.0215		
	0.031	0.108	-0.242	-0.7979	-0.242	0.108	0.031 \chi		
	0.0215	0.0982	0	<mark>-0</mark> .242	0	0.0982	0.0215		
	0.0066	0.0438	0.0982	<mark>0</mark> .108	0.0982	0.0438	0.0066		
	0.0008	0.0066	0.0215	<mark>0</mark> .031	0.0215	0.0066	0.0008		



# **Finding Zero Crossings**

- Four cases of zero-crossings :
  - {+,-}
  - {+,0,-}
  - {-,+}
  - {-,0,+}
- Slope of zero-crossing {a, -b} is |a+b|.
- To mark an edge
  - compute slope of zero-crossing
  - Apply a threshold to slope



## **On the Separability of LoG**

- Similar to separability of Gaussian filter
  - Two-dimensional Gaussian can be separated into 2 one-dimensional Gaussians h(x, y) = I(x, y) * g(x, y)  $n^2$  multiplications  $h(x, y) = (I(x, y) * g_1(x)) * g_2(y)$  2n multiplications  $\begin{bmatrix} .011\\ .13 \end{bmatrix}$

$$g(x) = e^{-\left(\frac{x^2}{2\sigma^2}\right)}$$

2*n* multiplications

$$g_2 = g(y) = \begin{vmatrix} .13 \\ .6 \\ 1 \\ .6 \\ .13 \\ .011 \end{vmatrix}$$

$$g_1 = g(x) = [.011 \ .13 \ .6 \ 1 \ .6 \ .13 \ .011]$$



#### On the Separability of LoG

$$\Delta^{2}S = \Delta^{2}(g * I) = (\Delta^{2}g) * I = I * (\Delta^{2}g)$$

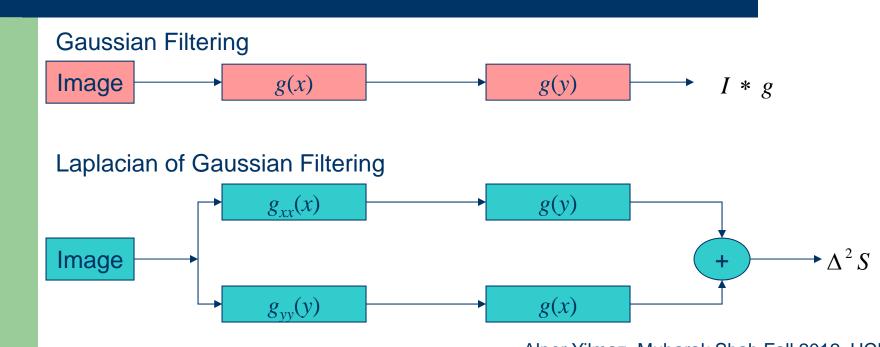
Requires  $n^2$  multiplications

$$\Delta^{2} S = (I * g_{xx} (x)) * g(y) + (I * g_{yy} (y)) * g(x)$$

Requires 4*n* multiplications



# Seperability



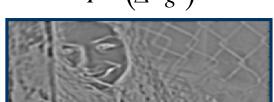
Alper Yilmaz, Mubarak Shah Fall 2012, UCF

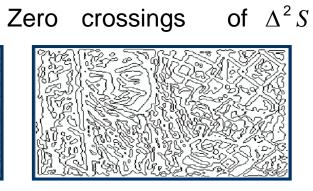


### Example

Ι

 $I * (\Delta^2 g)$ 





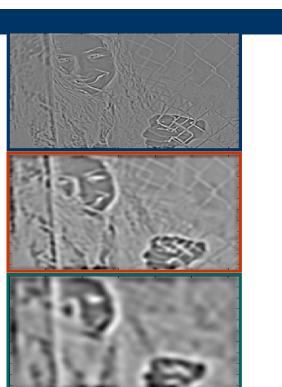


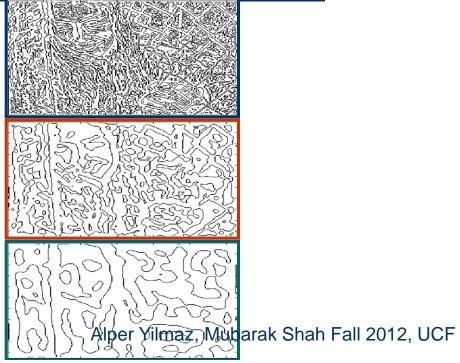
## Example



 $\sigma = 3$ 

 $\sigma = 6$ 







# **Algorithm**

- Compute LoG
  - Use 2D filter
- $\Delta^{2} g(x, y)$  $g(x), g_{xx}(x), g(y), g_{yy}(y)$
- Use 4 1D filters
- Find zero-crossings from each row
- Find slope of zero-crossings
- Apply threshold to slope and mark edges

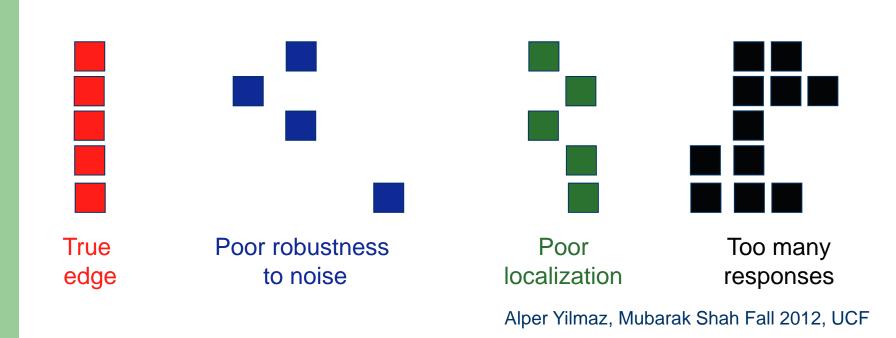


## **Quality of an Edge**

- Robust to noise
- Localization
- Too many or too less responses



## **Quality of an Edge**





## **Canny Edge Detector**

- Criterion 1: Good Detection: The optimal detector must minimize the probability of false positives as well as false negatives.
- Criterion 2: Good Localization: The edges detected must be as close as possible to the true edges.
- Single Response Constraint: The detector must return one point only for each edge point.



## **Canny Edge Detector Steps**

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"



#### Canny Edge Detector First Two Steps

• Smoothing

$$S = I * g(x, y) = g(x, y) * I$$

• Derivative

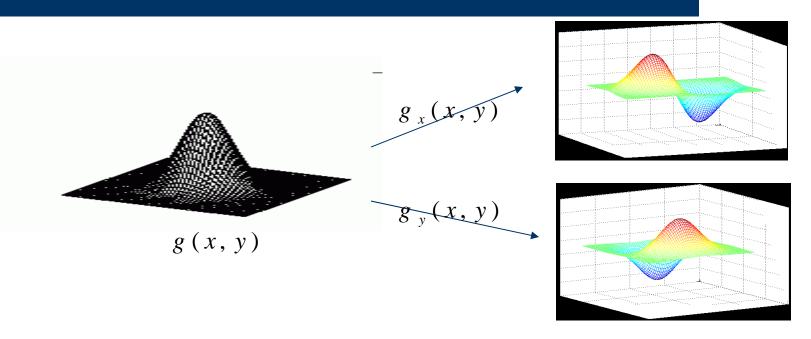
$$\nabla S = \nabla (g * I) = (\nabla g) * I$$
$$\nabla S = \begin{bmatrix} g_x \\ g_y \end{bmatrix} * I = \begin{bmatrix} g_x * I \\ g_y * I \end{bmatrix}$$

$$g(x, y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$

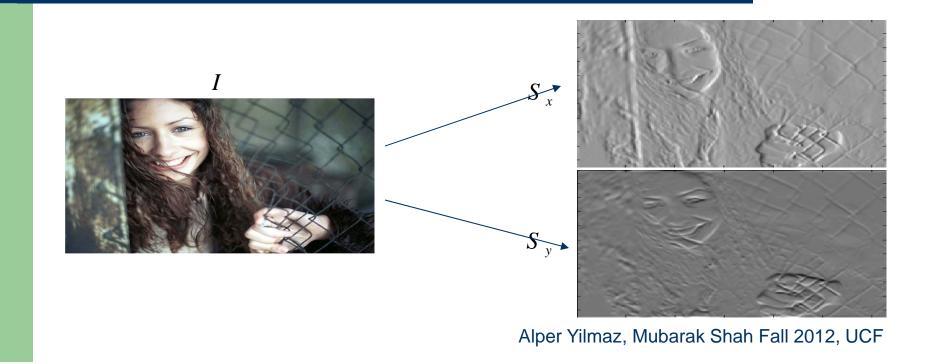


#### **Canny Edge Detector Derivative of Gaussian**





## Canny Edge Detector First Two Steps





### Canny Edge Detector Third Step

Gradient magnitude and gradient direction

$$(S_x, S_y)$$
 Gradient Vector  
magnitude  $= \sqrt{(S_x^2 + S_y^2)}$   
direction  $= \theta = \tan^{-1} \frac{S_y}{S_x}$ 



image

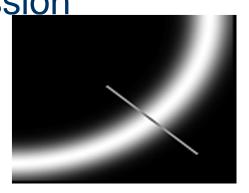


gradient magnitude



## Canny Edge Detector Fourth Step



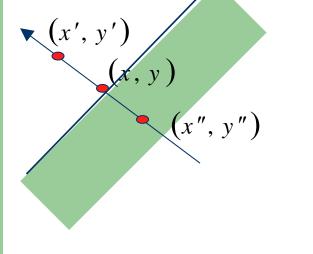


We wish to mark points along the curve where the **magnitude is largest**. We can do this by looking for a maximum along a slice normal to the curve (non-maximum suppression). These points should form a curve. There are then two algorithmic issues: at which point is the maximum, and where is the next one?



### Canny Edge Detector Non-Maximum Suppression

 Suppress the pixels in |∇S/ which are not local maximum



 $M(x, y) = \begin{cases} |\nabla S|(x, y) & \text{if } |\nabla S|(x, y) > |\Delta S|(x', y') \\ & \& |\Delta S|(x, y) > |\Delta S|(x'', y'') \\ 0 & \text{otherwise} \end{cases}$ 

x' and x" are the neighbors of x along normal direction to an edge



### Canny Edge Detector Non-Maximum Suppression



$$\Delta S \mid = \sqrt{S_x^2 + S_y^2}$$

М





Alper Yilmaz, Mubarak Shah Fall 2012, UCF

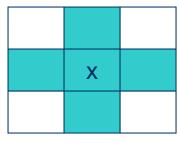
For visual ization  $M \ge Threshold = 25$ 



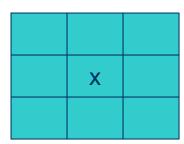
- If the gradient at a pixel is
  - above "High", declare it as an 'edge pixel'
  - below "Low", declare it as a "non-edge-pixel"
  - between "low" and "high"
    - Consider its neighbors iteratively then declare it an "edge pixel" if it is **connected** to an 'edge pixel' **directly** or via pixels **between** "low" and "high".



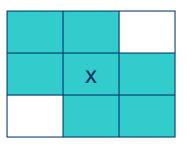
#### • Connectedness



4 connected

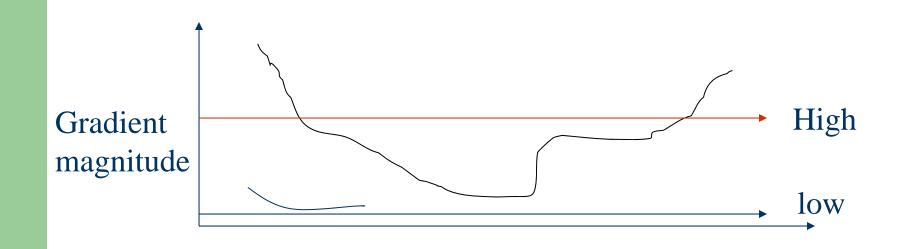


8 connected



6 connected







- Scan the image from left to right, top-bottom.
  - The gradient magnitude at a pixel is above a high threshold declare that as an edge point
  - Then recursively consider the *neighbors* of this pixel.
    - If the gradient magnitude is above the low threshold declare that as an edge pixel.





М

regular  $M \ge 25$ 

Hysteresis High = 35 Low = 15





# **Suggested Reading**

- Chapter 4, Emanuele Trucco, Alessandro Verri, "Introductory Techniques for 3-D Computer Vision"
- Chapter 2, Mubarak Shah, "Fundamentals of Computer Vision"